
B.Sc. in Computer Science and Engineering Thesis

An Efficient Approach for Real-Time Crowdsourced Package
Delivery using Public Transport Networks

Submitted by

Fariha Tabassum Islam
201305007

Supervised by

Tanzima Hashem

.

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

October 2018

CANDIDATES’ DECLARATION

This is to certify that the work presented in this thesis, titled, “An Efficient Approach for Real-
Time Crowdsourced Package Delivery using Public Transport Networks”, is the outcome of the
investigation and research carried out by us under the supervision of Tanzima Hashem.

It is also declared that neither this thesis nor any part thereof has been submitted anywhere else
for the award of any degree, diploma or other qualifications.

Fariha Tabassum Islam
201305007

i

CERTIFICATION

This thesis titled, “An Efficient Approach for Real-Time Crowdsourced Package Delivery
using Public Transport Networks”, submitted by the group as mentioned below has been ac-
cepted as satisfactory in partial fulfillment of the requirements for the degree B.Sc. in Computer
Science and Engineering in October 2018.

Group Members:

Fariha Tabassum Islam

Supervisor:

Tanzima Hashem
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

ii

ACKNOWLEDGEMENT

First and Foremost, I am grateful to my thesis supervisor, Dr. Tanzima Hashem, who has con-
stantly guided and supported me in every step of my thesis. She has helped me in easy and hard
times in completing the thesis with her knowledge, patience and kindness and motivated me to
continue my thesis. I could not have completed my thesis without her guidance and support.

I am grateful to Saiedur Rahaman and Dr. Flora Salim for their guidance and sharing resources.

I am grateful to my parents who constantly inspired and encouraged me throughout my thesis.

Dhaka
October 2018

Fariha Tabassum Islam

iii

Contents

CANDIDATES’ DECLARATION i

CERTIFICATION ii

ACKNOWLEDGEMENT iii

List of Figures vi

List of Tables viii

List of Algorithms ix

ABSTRACT x

1 Introduction 1

2 Literature Review 4
2.1 Package Delivery with Crowd . 4
2.2 Graph Summarization . 7
2.3 The k-Shortest Paths Problem . 7

2.3.1 The k-Shortest Paths Problem in the Public Transport Network 8

3 Problem Formulation 9
3.1 Preliminaries . 9
3.2 Problem Statement . 11

4 Our Solution 12
4.1 Overview . 12
4.2 Steps of Refining the Search Space . 14

4.2.1 Summarizing the PTN Graph . 14
4.2.2 Finding k Shortest Paths in the Summary Graph 22
4.2.3 Refining the Search Space in the Original Graph 23

4.3 Matching Crowd with Package Delivery Requests 24
4.3.1 Finding the ith Shortest Path within the Refined Search Space 24
4.3.2 Matching the ith Shortest Path with Crowd 25

iv

5 Experiment 27
5.1 Effect of the Parameter t . 28
5.2 Effect of Detour Limit . 29
5.3 Effect of the Number of User Participation Requests 31
5.4 Effect of the Number of Package Delivery Requests 33

6 Conclusion 35

References 36

v

List of Figures

3.1 The public transport network map of Melbourne city 10

4.1 Overview of our approach for crowdsourced package delivery using the public
transport network . 13

4.2 Example of constructing a summary graph from the original PT network graph. 15

5.1 Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of t. Here, m = 50000, n = 100 and
ddt = 30. 28

5.2 Comparison of delivery ratio in percentage for our heuristic approach and the
baseline approach for different parameter settings of t. Here, m = 50000, n =

100 and ddt = 30. 28
5.3 Comparison of delivery time in hours for our heuristic approach and the baseline

approach for different parameter settings of t. Here, m = 50000, n = 100 and
ddt = 30. 29

5.4 Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of detour limit, ddt in minutes. Here,
m = 50000, n = 100 and t = 50. 30

5.5 Comparison of delivery ratio in percentage for our heuristic approach and the
baseline approach for different parameter settings of detour limit, ddt in minutes.
Here, m = 50000, n = 100 and t = 50. 30

5.6 Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of detour limit, ddt in minutes. Here,
m = 50000, n = 100 and t = 50. 31

5.7 Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of the number of user participation
requests. Here, n = 100, t = 50 and ddt = 30. 31

5.8 Comparison of delivery ratio in percentage for our heuristic approach and the
baseline approach for different parameter settings of the number of user partic-
ipation requests. Here, n = 100, t = 50 and ddt = 30. 32

vi

5.9 Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of user participation requests. Here,
n = 100, ddt = 30 and t = 50. 32

5.10 Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of the number of package delivery
requests. Here, m = 50000, t = 50 and ddt = 30. 33

5.11 Comparison of delivery ratio in percentage for our heuristic approach and the
baseline approach for different parameter settings of the number of package
delivery requests. Here, m = 50000, t = 50 and ddt = 30. 33

5.12 Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of the number of the package delivery
requests. Here, n = 100, ddt = 30 and t = 50. 34

vii

List of Tables

2.1 Comparison of existing literature on crowdsourced package delivery 6

viii

List of Algorithms

1 SummarizeGraph . 17
2 AddWalkingEdgesInOriginalGraph . 17
3 FindSupernodes . 18
4 AddEdge . 18
5 ConstructSummaryGraph . 19
6 DijkstraModified . 20
7 ExistsSNBetweenTwoSNs . 21
8 MapNodesToSupernodes . 22
9 RefineSearchSpace . 24

ix

ABSTRACT

The surge in popularity of e-commerce has increased the demand of fast and cost-

efficient package delivery and this demand has caused the rise of crowdsourced package

delivery. In this thesis, we introduce a novel concept of crowdsourced package delivery

using the public transport networks. People usually travel in public transport networks

for work, grocery-shopping, taking child to school etc. They can easily carry a package

during their journies and transfer them to other passengers. Using the public transport

network for the crowdsourced package delivery increases the number of workers available

for package delivery. In this thesis, we propose an efficient approach to find the package

delivery route with the minimum delivery time based on the available journey plans of

the travellers in the public transport networks. The underlying idea of our approach is

to incrementally find a shortest path in the public transport network for the source and

destination locations of the pakage until the path matches with the available journey plans.

To compute the package delivery path in real time, we propose heuristics to estimate the

shortest path for the package delivery in the public transport network and to match the

package delivery path with the journey plans of multiple passengers. Our approach allows

package transfers between the public transport passengers and thereby increase the success

rate of the crowdsourced package delivery. We evaluate our approach in experiments using

real public transport network and synthetic user journey datasets generated from real check-

in data. We find that crowdsourced package delivery using public transport networks is

a feasible solution and show that our approach incurs less processing overhead than the

optimal one in return of decreasing the package delivery rate and increasing the package

delivery time slightly.

x

Chapter 1

Introduction

In recent years, the need of fast and cost-efficient package delivery has risen dramatically with
the growth of e-commerce. The number of packages delivered per day is more than ever. Tra-
ditional pickup and delivery method with a fixed set of workers cannot satisfy the large need of
package delivery. Furthermore, traditional methods require a large number of vehicles on the
road for delivering packages and they incur large fuel-costs, pollute the environment and cause
extra traffic-load in peak hours. For example, in 2017, United Package Service (UPS) held 22%

of the global market share of express and courier service providers [1]. Their daily global de-
livery volume is 22 million packages and documents and their delivery fleet includes over 112
thousand vehicles in 2017 [2]. On the other hand, crowdsourced package delivery provides the
benefit of speedy and low-cost delivery, does not pollute the environment and reduces the traffic
load. Hence, many package delivery services [3–10] have started using crowdsourcing [11], like
using taxi drivers, commuters, travelers as worker to deliver packages for minimal incentives.

Existing crowdsourced package delivery methods use various transport mediums like private
car, taxi even walking. However, existing crowdsourced delivery services have following limi-
tations:

i A package might be heavy for a single worker to carry on and it might be difficult to
match a package delivery request with more than one worker’s travel plan at the same
time.

ii A package may need space, which is not available in a taxi or a private car. Thus workers
who do not have adequate space required for a package becomes ineligible for the package
delivery.

iii A package delivery request may not match with a single worker’s travel plan and require
transfer among multiple workers, which might become hard to arrange.

We propose a solution that overcome the above mentioned issues. In this thesis, we introduce a

1

2

novel concept of crowdsourced package delivery using the public transport network.

Everyday many people use public transports for their daily routine works. Now-a-days, these
public transport network services provide people the facility to pre-plan their journeys optimally
given starting points, destinations and departure time ranges. Daily many people travel some
routine paths using public transports for work, grocery-shopping, taking kid to school etc. They
might be interested in carrying packages for delivery during their journey if they are rewarded
properly in return. If these passengers are targeted as workers, then we can use their journey
plans to calculate delivery routes of package and the package delivery chance increases. Fur-
thermore, the utility of the public transport capacity will be increased and there will be less
vehicles for the particular purpose of package delivery which in turn will reduce traffic loads
and carbon emissions.

Since in public transports many passengers travel together, it would not be hard to manage
multiple workers for heavy packages. Furthermore, passengers have overlaps in their journey
plans in public transports, which increases the probability to match a package delivery request
with transfers. In addition, in cities of developed country the public transports are underutilized,
except in peak hours, which also solve the problem of required space for a package.

In this thesis, we propose a method to find the routes for delivering packages with the help of
public transport passengers by using their journey plans. In our system, passengers who are
interested in becoming crowdsourced delivery workers share their journey plans . Each worker
has a maximum detour limit, which represents how much the worker is willing to deviate from
his original plan in time. On the other hand, each package is delivered from a source location
to a destination location and has additional information like the package pick up time.Given
all these information, package delivery routes are calculated that include the passengers who
will carry a package and the time and place of the package transfers among the passengers.
Since package deliveries must be fast and cost-efficient, we focus on minimizing each package
delivery time. By minimizing the package delivery time, fast package delivery is ensured.

The challenges for finding the package delivery path with the minimum delivery time is to ex-
plore a large number of possible options from a huge set of journey plans in the large public
transport network. Exploring all possible options for every package delivery request would in-
cur extremely high processing overhead. To adderss this issue, we develop a heuristic approach
to find the delivery path for the package using the journey plans in the large public transport
network with reduced processing overhead in return of increasing the packet delivery time and
decreasing the delivery rate slightly. The underlying idea of of our heuristic solution is to incre-
mentally find shortest paths for the package package delivery and then to check whether there
exist a match of the shortest path with the journey plans of the travellers in the public transport
network. To increase the efficiency for finding the shortest paths, we summarize the public
transport network (PTN) graph and run the shortest path algorithm in the summarized graph.

3

The paths found in the summary graph in used to construct a smaller search space. The shortest
paths found from the refined search space is matched with available journey plans using greedy
approach because finding the best set of travellers to carry a package is unduly expensive. The
matching approach allows detour if there is no user in some part of the path.

The contributions of this thesis are summarized as follows:

1. We introduce the concept of package delivery with crowd using the public transport net-
work and formulate the problem.

2. We present an efficient approach for finding the package delivery path using the journey
plans of the crowd in the public transport network. We propose a heuristic algorithm to
incrementally find shortest paths for package delivery in the public transport network. In
our heuristic, we summarize the public transport network graph in a novel way to refine
the search space for finding the shortest paths with reduced processing time and high
accuracy. We also develop a heuristic to match the shortest path with the journey plans
of the travellers in the public transport network to find a delivery route for the package
delivery.

3. We evaluate the performance of our heuristic approach with real and synthetic datasets
and compare our approach with optimal method in extensive experiments.

The rest of the thesis is organized as follows: Chapter 2 covers the brief discussion of existing
works related to our work. Chapter 3 includes necessary notations and formal problem state-
ment. In Chapter 4, we give a brief overview of our approach to solve the problem and then
each step of our solution is explained in details. In Chapter 5, we thoroughly evaluate the per-
formance of our approach and feasibility of the concept. We conclude the thesis in chapter 6
and provide future working direction.

Chapter 2

Literature Review

In this chapter, we mention the existing research works that are related to our work. In Sec-
tion 2.1 research works related to crowdsourced package delivery are discussed. We summarize
the public transport graph and find shortest path to solve our problem. In Section 2.2 we dis-
cuss existing works on graph summarization. Section 2.3 describes existing works related to
k-shortest paths algorithm.

2.1 Package Delivery with Crowd

Among traditional delivery related works, a scheduling of pickup and delivery problem with
package transfers among delivery-vehicles has been proposed in [12] with constraints like, ve-
hicle capacity, pickup and delivery time-window with the objective of delivering maximum
number of packages in the minimum time. The authors solve the pickup and delivery problem
more efficiently by planning route using exchange of packages among delivery-vehicles. But
this approach of delivery is not as flexible and cheap as crowdsourced delivery.

Many works have been done on crowdsourcing in recent few years focusing on different as-
pects like sensing [13–15], privacy [16], task assignment [15, 17, 18], route-recommendation
to crowd-worker [19] and delivery [20–25]. Since our work focuses on crowdsourced package
delivery, we are only concerned about the works on package delivery with crowd. The existing
works on crowdsourced delivery can be compared based on four criteria which are discussed as
follows:

i Future locations of crowd delivery workers known or unknown: Among existing
works on crowdsourced delivery, in [21–23] the future locations of delivery workers are
not known in advance. We know the future locations in advance in [24, 25] and both
cases are considered in [20]. Workers’ future locations are needed for calculating delivery

4

2.1. PACKAGE DELIVERY WITH CROWD 5

route. In those works where future locations are unknown, they are predicted from human
mobility pattern or historical data.

In the paper [20], when workers’ future locations are known, a routing graph is formed
from that information and an optimal delivery path is found from that graph for each
package. When the future locations of workers are not known, the authors predict those
locations from past geo-tagged tweets and ranks each worker based on their probability
to reach destination. A package is repeatedly transferred to higher ranked users until it
reaches destination.

A distribution method is proposed in [26] to deliver packages using local pre-existing
mobility routine. In this paper, human mobility is predicted from cell tower data history
and that prediction is used to plan delivery routes for packages. The quality of delivery
service depends on the accuracy of the prediction.

The authors in [21] propose to deliver packages using taxi-drivers while attending passen-
ger requests. They pre-calculate offline optimal paths from historical taxi data for all pair
of interchange stations. A package is assigned to a nearby taxi if it offers less expected
delivery time than calculated. The delivery depends on availability of taxi in real time.

In the paper [22], human mobility pattern is traced from workers’ daily mobility data
(e.g. cell tower data) and package delivery route optimization is done using the concept
of message routing in pocket switched network. The delivery depends on the availability
of workers near package safety boxes in real time.

Thus, the problem with predicting future location of worker is that, uncertainty and un-
expected long delay is introduced in the package delivery system. Delivering packages in
certain time ranges may fail for some packages and those packages cannot be identified
in advance. Hence, it becomes hard to respond to unexpected delays.

In both [24, 25], package delivery requests are matched with drivers whose future travel
plans are known. Since knowing the future locations of workers prevents the limitations
like, unexpected delays, our work takes the journey plans of the worker as input.

ii Transfer of packages: The concept of transferring package from worker to worker is
important for crowdsourced delivery, because workers may not be available for all pair
of sources and destinations. Without transfer, all packages cannot reach destination. In
both [24, 25] transfer of package is not available which reduces delivery chances.

Package transfer is implemented in existing literature in two ways: using safety boxes
and worker to worker direct transfer. In [21, 22, 26], packages are kept in interchange
stations or in safety boxes or in exchange points for transfer. Workers pickup packages
from safety boxes and delivers to other safety boxes. The problem with safety boxes
is that, they are not available everywhere. Hence, the possible locations of transfers
become limited. In [20], package is transferred from worker to worker directly. Since

2.1. PACKAGE DELIVERY WITH CROWD 6

Paper
Criteria

Future
location of
worker

Transfer of
packages

Detour
limit

Objective

[20] Unknown
or known

Worker to
worker

Same for
all

Minimize each package delivery
time

[26] Unknown Safety box No detour Minimize each package delivery
time

[21] Unknown Safety box Same for
all

Minimize each package delivery
time

[22] Unknown Safety box No detour Balance higher profit, lower cost
and higher quality of service

[25] Known No transfer Different
for all

Minimize system-wide delivery
cost

[24] Known No transfer Different
for all

Maximizing delivery task assign-
ment and minimizing delivery cost

Our work Known Worker to
worker

Different
for all

Minimize each package delivery
time

Table 2.1: Comparison of existing literature on crowdsourced package delivery

direct transfer overcomes the shortcoming of safety boxes, we use worker to worker direct
transfer method in our thesis.

iii Detour limit: Detour limit of a worker represents how far a worker is prepared to stray
from his original path to deliver a package. This concept is essential for delivering all
requested packages for the same reason as package transfer. The works in [22,26] do not
allow detour of workers.

The detour limit can be same for all workers or different for every worker. The concept
of same detour limit for all workers is used in [20, 21]. However, this does not reflect
the individual requirement of each worker. In both [24, 25], every worker inputs his own
detour limits. We allow individual detour limit for each worker because it better reflects
the demand of each worker.

iv Objective: The existing literature of crowdsourced delivery focus on a variety of ob-
jectives. The objectives of the works in [20, 21, 26] are same, which is minimizing each
package delivery time. They try to find the optimal or near-optimal delivery path using
various approach. However, finding a optimal path for a package delivery may use some
workers such that no path or a worse path is found for another delivery. Thus, this ob-
jective does not reflect practical necessity. The authors in [25] aims to minimize the total
delivery cost. The work in [22] aims to find a balance among higher profit, lower deliv-
ery cost and higher quality of service. The work in [24] has the objective of maximizing
delivery task assignments and minimizing delivery cost.

2.2. GRAPH SUMMARIZATION 7

In package delivery, faster delivery is very important. In this thesis, we minimize each
package delivery time to improve the quality of service.

From the Table 2.1, it can be seen that any single work in the above mentioned crowdsourced
delivery related works does not include all the best features. But, we combined all of them in
our thesis. Thus, our work overcomes the limitations of existing works.

2.2 Graph Summarization

Our solution approach summarizes the PT network graph to reduce search space for route
finding. The PT network is different from road network [27] since the former one contains
a timetable. We could not fit any existing paper on summarizing the PT network to our pur-
pose. The paper [28] converts a time-table based transport network graph into a multilevel
graph where each higher level contains less nodes than the lower levels. Here, the search space
is reduced only if both the source and the destination are in higher level. Thus, this paper does
not fit our purpose.

2.3 The k-Shortest Paths Problem

In our approach, an algorithm for finding k-shortest paths is run on summary graph. The k-
shortest paths (KSP) problem is classified into two types: KSP where paths must be loopless
and KSP with no restriction on paths (loop is allowed).

• The k-shortest loopless paths problem: For this problem, the algorithm by Yen [29] is
the state-of-art algorithm with the worst-case time complexity O(kn(SP (s, d)), where
SP (s, d) represents the worst case time complexity of solving the shortest path problem.
Since the time complexity to calculate the shortest path is O(m + n log n) at minimum,
the worst-case time complexity of Yen’s algorithm is O(kn(m + nlogn)) at best. Each
work in [30–32] provides a more efficient implementation of Yen that does not improve
over the worst-case time complexity, but computational experiments reveal their better
performances.

• The k-shortest paths problem with cycle: For this problem, the algorithm by Epp-
stein [33] has an excellent worst-case time complexity of O(m + n log n + k). Though
the work in [34] does not improve Eppstein’s worst-case time complexity, it performs
better than Eppstein in practice for k ≤ 100. The work in [35] provides a new algorithm
for KSP problem and [36] provides an improvement of Eppstein’s algorithm. These two

2.3. THE K-SHORTEST PATHS PROBLEM 8

works do not improve the worst-case time complexity but perform better than Eppstein in
practice. One performs better than the other in some cases.

Therefore, computing KSP without restriction is faster than loopless KSP. Thus, after finding
KSP using algorithms of second type, paths with loops can be detected and removed to find k′-
shortest loopless paths, where k′ ≤ k. For k ≤ 100, the performances of algorithms in [34], [35]
and [36] are not much different. Since, the KSP found in the summary graph do not need to be
loopless and we do not need high value of k, any of them can be used.

2.3.1 The k-Shortest Paths Problem in the Public Transport Network

In our solution approach, k-shortest paths need to be found in the PT network graph given the
source, the destination and the start time. As the edge-costs are time-dependent in PT network
graph, KSP algorithms mentioned earlier cannot be used directly. The paper [37] proposes
adaptations of some existing algorithms to find KSP in the transport network graph, which
includes both the road network and the PT network. The authors in this paper proposes the
adaptation of Yen’s [29] (or Lawler’s [30]) algorithm to find k-shortest loopless paths. They
proposed to adapt the REA [35] algorithm to find k-shortest paths without restriction to cycle.
They also provided an iterative variant of REA and suggests a heuristic approach to detect and
suppress loops while searching.

Though it is possible to use an adaptation from [37] for our approach, but this paper focuses on
general transport network graph. The paper in [38] provides a better option because, k-shortest
paths are found in timetable-based PT networks by adapting the algorithm in [34]. It represents
the PT network in the time-expanded model and in the time-dependent model and finds KSP
based on the earliest arrival time, the shortest travel time and the minimum number of transport
changes in a path. Among them, KSP based on the earliest arrival time fits our purpose. In
addition, this paper has impressive experimental results. Thus, the algorithm of this paper for
time-dependent approach based on earliest arrival time in used in our solution. The algorithm
is slightly modified while using, since the PT network graph is represented in more condensed
form than time-dependent model in our thesis.

Chapter 3

Problem Formulation

In this chapter, we define the basic concepts and introduce notations and assumptions used
throughout this thesis, and formally define our problem.

3.1 Preliminaries

DEFINITION 1 (Public transport network): The graph G = (V,E, T) represents the public
transport network where each node vk ∈ V represents a stop (e.g. bus stop, train station)
and each edge eij ∈ E represents a direct connection between two adjacent stops, vi and vj .
Each node vk has a location loc(vk). The edge cost c(eij) = c(vi, vj) represents the travel-
time from vi to vj using the public transport. The timetable of connection eij is represented
by Tij = {(t1vi , t

1
vj
), . . . , (tnvi , t

n
vj
)}, where tkvi < tk+1

vi
and tkvj − tkvi = tk+1

vj
− tk+1

vi
= c(eij) for

k ∈ [1, n].

Figure 3.1 shows a map of the public transport network in Melbourne city which is converted
to graph.

DEFINITION 2 (Package delivery request): Let, D be a set of package delivery requests. A
package delivery request Di ∈ D is composed of the 3-tuple: < Pi, ls, ld > where Pi represents
the package to deliver from location ls to location ld and tb represents the time delivery begins.

DEFINITION 3 (Journey edge): Each journey edge jk is a 5−tuple < vdept, varr, tdept, tarr, rid >,
where tdept represents the departure time from stop vdept ∈ V , tarr represents the arrival time
at stop varr ∈ V and rid represents the transport id.

DEFINITION 4 (User participation request): Let, S be a set of user participation requests.
A user participation request Si ∈ S is composed of the following 3-tuple: < ui, ddt, J > where

9

3.1. PRELIMINARIES 10

Figure 3.1: The public transport network map of Melbourne city

user ui ∈ U is a passenger who uses the public transport network, ddt represents the detour time
limit of user ui. The journey plan J = (j1, j2, . . . , jn) is a sequence of journey edges traveled
in order by user ui.

DEFINITION 5 (Package delivery path): A package delivery path Li
k = (j1, j2, . . . , jn) is

the kth shortest delivery path, which consists of a sequence of journey edges traveled in order
by package Pi.

DEFINITION 6 (Package delivery route): A delivery route Qi = (q1, q2 . . . , qn), represents
a sequence of route edges traveled in order by the package Pi. A route edge qk is 2-tuple:
< jk, uk >, where jk is a journey edge and uk ∈ U is the passenger who will carry the package
along the journey edge.

3.2. PROBLEM STATEMENT 11

3.2 Problem Statement

Thus, the problem of crowdsourcing package delivery using public transport network can be
stated as follows: Given a public transport network graph G, a set of package delivery requests

D and a set of user participation requests S, compute a package delivery route for each delivery

request that minimizes each package delivery time while maintaining the detour limit of users.

Chapter 4

Our Solution

In this chapter, we introduce our solution approach to the problem formulated in Chapter 3,
which is delivering packages using the public transport network with the help of its passengers.
To solve this problem we incrementally find heuristic at most t shortest paths for a package de-
livery request from the public transport network graph. Our approach is made computationally
efficient by reducing the search space for finding paths in the public transport network graph.
We find at most t delivery paths for each package delivery to ensure we can find users to match
the path of a package for delivery. When we find a delivery path for a package, we match the
path with the journey plans of users and keep repeating this process until a package delivery
route for that package is found such that user specified detour limit is maintained.

This chapter is organized as follows: Section 4.1 gives the overview of our approach to compute
a delivery route for a package delivery. Each step of refining the search space in the original
graph is described in Section 4.2. The steps needed for finding package delivery paths for a
package and matching user participation requests with those paths to find the package delivery
route are explained in Section 4.3.

4.1 Overview

To solve the problem we first focus on finding package delivery paths for each package without
considering the journey plans of the workers. Finding the delivery path with the shortest deliv-
ery time is computationally expensive, since the PTN graph is very large. In addition, the need
to consider timetable makes it more expensive since each edge in this graph contains multiple
schedules and the package delivery time depends on when the delivery starts. We need a way
to make the computation time small and practical. Thus, we summarize the PTN graph and find
up to k shortest paths for a package delivery in the summarized graph. These shortest paths
enable us to find a refined search space in the PT graph that is likely to include the k shortest

12

4.1. OVERVIEW 13

paths for the package delivery in the original graph.

Because we did not consider user participation requests while finding a route for delivery, a case
may occur where no user is available for the path with the shortest delivery time or this path
cannot maintain detour limit constraints of users. This problem is solved by finding at most
top-k paths for delivery for each package.

After finding each path, that path is matched with user journey plans to find suitable users and
transfer points that maintain all constraints and a package delivery route is formed for each
package.

Start

Summarize the original PTN graph

Find k shortest paths in the summary graph

Refine the search space in the original graph

i = 1

Find the ith shortest path in the refined search space for a package

Match user journey requests with the path to find a package delivery route

Is any delivery
route found?

i = i + 1

i ≤ k?Stop

yes

no

no no

Figure 4.1: Overview of our approach for crowdsourced package delivery using the public
transport network

Figure 4.1 gives an overview of our solution approach. Our solution approach finds the delivery
route for each package iteratively. Each iteration can be divided into two phases. First, we

4.2. STEPS OF REFINING THE SEARCH SPACE 14

find a delivery path in the PTN graph for each package. Then we match that path with the
journey plans of users and find users and transfer points for that package. Since the PTN graph
is large with thousands of nodes and millions of edges, to find delivery path efficiently we first
summarize the original PTN graph. The summary graph is pre-computed. Then we find at most
t shortest paths in the summary graph, which helps us to refine the search space in the original
graph using the upper bound. We find heuristic at most t-shortest paths incrementally from the
refined search space. When a path is found, they are matched with user journey plans to find
a package delivery route for each package that includes users and journey edges. If a delivery
route is not found for the path, then the next shortest delivery path within the refined search
space is calculated and matching is repeated. This process continues until a package delivery
route is found or a pre-defined number of iterations are completed.

4.2 Steps of Refining the Search Space

We present the steps of refining the search space in the original PTN graph in this section.
These steps are designed such that real time efficient computation of package delivery paths are
possible.

4.2.1 Summarizing the PTN Graph

Summarizing the PTN graph is the first step in refining the search space.

Given PTN graph G(V,E) is summarized into the graph GS = (VS, ES) with less nodes and
less edges to reduce the search space. A node vi in G is a supernode si in GS , if the total
number of outgoing edges from vi and other nodes within the distance r from vi is greater than
Th. Thus, a supernode si is defined with respect to a node vi. It can be represented as a 2-tuple:
si =< vi, Ni > where vi ∈ V is the center of the supernode si and Ni ⊂ V is a set of other
nodes of G that are within the distance r from vi. Ni is called the set of neighbour nodes of
vi. A node in G can be part of multiple supernodes. The vertices of the summarized graph
represent the supernodes and there is an edge between two supernodes if any of the following
rules are satisfied.

The graph summarization heuristic follows the following rules:

1. If two different supernodes si and sj , share a common node vk, then si and sj has an edge

in GS . The cost of this edge (si, sj) is

c(si, sj) = c(si.vi, vk) + c(vk, sj.vj) (4.1)

4.2. STEPS OF REFINING THE SEARCH SPACE 15

(a) Original graph G of a transport network. Each color represents
different transportation mode. Circles wiht radius r have been drawn
around nodes eligible for supernodes for Th = 4.

(b) Summarized graph GS of
G. Each node vi in G eligi-
ble for being supernode is con-
verted into si in GS . Edges
have been added according to
rules in Section 4.2.1

Figure 4.2: Example of constructing a summary graph from the original PT network graph.

2. If two nodes vl and vm from two different supernodes si and sj respectively, has an edge

elm ∈ E in G, then si and sj has an edge eij ∈ VS in GS . The cost of this edge (si, sj) is

c(si, sj) = c(si.vi, vl) + c(vl, vm) + c(vm, sj.vj) (4.2)

3. If two nodes vl and vm from two different supernodes si and sj respectively, have distance

less than r, then si and sj have an edge in GS . The cost of this edge (si, sj) is

c(si, sj) = c(si.vi, vl) + c(vl, vm) + c(vm, sj.vj) (4.3)

4. If two nodes from two different supernodes si and sj are connected via another series of

nodes vk1 , vk2 , ..., vki in G, where vki is neither a supernode nor included in the supernode

of other nodes, then si and sj has an edge in GS . The cost of this edge (si, sj) is

c(si, sj) = c(si.vi, vk1) + c(vk1 , vk2) + ...+ c(vki−1, vki) + c(vk2 , sj.vj) (4.4)

If two supernodes share an edge according to multiple rules, then the rule that results in min-
imum cost is chosen. If there is no edge between vi and vj while calculating edge cost in the
summary graph, then we assume c(vi, vj) = walkingT ime(loc(vi), loc(vj)), where walking-

Time(location1, location2) returns the approximate time to walk from location1 to location2.

The construction of the summary graph is explained using Figure 4.2. For this example, we
assume edge cost is represented in minutes and it takes 5 minutes to walk distance r.

In Figure 4.2, the supernode s17 in GS is defined with respect to v17 in G and includes nodes v2

4.2. STEPS OF REFINING THE SEARCH SPACE 16

, v29 which are within r distance from v17. The supernode s17 is eligible as a supernode because
v17, v29 and v2 have total 5 outgoing edges from the circle with radius r which is greater than
the threshold Th, where Th = 4. Here, v17 is the center node and s17.N17 = {v29, v2}.

There is an edge between s7 and s21 in Figure 4.2, because the circles of v7 and v21 share a
common node v20 in G. Here, c(s7, s21) = c(v7, v20) + c(v20, v21) = 5 + 5 = 10.

The supernodes s21 and s25 are connected with an edge in GS , because v9 included in supernode
s21 and v14 included in supernode s25 share an edge in G. Hence, c(s21, s25) = c(v21, v9) +

c(v9, v14) + c(v14, v25) = 5 + 12 + 5 = 22.

Again, the supernodes s30 and s7 have an edge between them, because though v38 included in
supernode s30 and v6 included in supernode s7 are not connected, the distance between v38 and
v6 is less than r in G. Thus, c(s30, s7) = c(v30, v38) + c(v38, v6) + c(v6, v7) = 5 + 5 + 5 = 15.

The supernode s17 has an edge with s20, because v17 and v20 in G are connected via a series of
vertices v18 and v19, where v18 and v19 are neither supernode nor included in the supernode of
other nodes. Here, c(s17, s20) = c(v17, v18) + c(v18, v19) + c(v19, v20) = 12 + 12 + 15 = 39.

Each edge in the summary graph represents a path from the center of one supernode to an-
other. The path corresponding to each edge is saved in the summary graph. A saved path
wij =saved-path(si, sj)=saved-path(eij) is a 4-tuple: < si, sj, SP, d >, where si, sj ∈ VS ,
SP = (si.vi, vk1 , . . . , vkn , sj.vj) is a sequence of nodes from the center of supernode si to the
center of supernode sj and d is the path-cost and equal to the edge cost, d = c(si, sj). W is a
set of saved paths.

We introduce two notations srcsn(vi) and destsn(vi), ∀vi ∈ V . The notation srcsn(vi) rep-
resents a set of supernodes that includes vi in the summary graph or it represents the nearest
supernode which can be reached from vi. destsn(vi) is represents a set of supernode that in-
cludes vi in the summary graph or it represents the nearest supernode from which vi can be
reached. This is called the mapping of a node of the original graph to one or more supernodes
of the summary graph.

4.2. STEPS OF REFINING THE SEARCH SPACE 17

The algorithm to summarize an original PT network graph is explained below that maintains all
the rules and assumptions mentioned earlier.

Algorithm 1 SummarizeGraph

Input: PT network graph G(V,E), Radius r, Threshold Th

Output: Summary graph GS(VS, ES)
1. G← AddWalkingEdgesInOriginalGraph(G, rwalk)
2. X ← FindSupernodes(G, r, Th)
3. for all si ∈ X do
4. for all vk ∈ si.vi ∪ si.Ni do
5. add si in srcsn(vk)
6. add si in destsn(vk)
7. end for
8. end for
9. GS ← ConstructSummaryGraph(G,X)

10. MapNonSupernodesToSupernodes(G,GS)
11. SortNodeIdToSupernodeAndCost(G,GS)
12. return GS

Algorithm 1 shows the pseudocode for converting the original PTN graph to a summarized
graph. Given a graph G, radius r and threshold Th as input, it returns the summary graph GS .
First, we add walking edges in the original graph when the distance between two nodes is less
than a predefined threshold, rwalk, rwalk ≥ r in Line 1. Then, using Function FindSupern-

odes(G, r, Th) the supernodes are identified and included in a set. In Line 3-8, the mapping of
the nodes included in the supernodes are updated. After that, the 4 rules of edges are applied
and a summary graph GS = (VS, ES) is constructed by the Function ConstructSummarry-

Graph(G(V,E), X). The nodes that were not included in any supernode are now associated
with a supernode in the Function MapNonSupernodesToSupernodes(G(V,E), GS(VS, ES)).

Algorithm 2 AddWalkingEdgesInOriginalGraph

Input: PTN graph G(V,E), distance threshold rwalk

Output: Updated PTN graph G(V,E)
1. for all vi ∈ V do
2. for all vj ∈ V do
3. d← distance(vi, vj)
4. if d < rwalk then
5. add walking edge between vi, vj in E
6. end if
7. end for
8. end for
9. return G

In Algorithm 2, the pseudocode of the Function AddWalkingEdgesInOriginalGraph(G,GS) is
shown. An edge is added between two nodes in the PTN graph if their distance is less than a
threshold rwalk.

4.2. STEPS OF REFINING THE SEARCH SPACE 18

Algorithm 3 FindSupernodes

Input: Graph G(V,E), Radius r, Threshold Th

Output: A set of supernodes, X
1. X ← ∅
2. for all vi ∈ V do
3. srcsn(vi)← ∅
4. destsn(vi)← ∅
5. Ni ← FindNearbyNodes(vi, r)
6. g ← NumberOfOutgoingEdgesOfCandidateSN(vi, Ni)
7. if g > Th then
8. make a supernode si =< vi, Ni >
9. add si to X

10. end if
11. end for
12. for all si ∈ X do
13. for all sj ∈ X and i 6= j do
14. if {sj.vj} ∪ sj.Nj is a subset of {si.vi} ∪ si.Ni then
15. remove sj from X
16. end if
17. end for
18. end for
19. return X

The Function FindSupernodes(G, r, Th) is elaborated in Algorithm 3. The loop in Line 2-11
finds the set of nodes that fulfill the conditions of becoming supernodes. To identify a su-
pernode, first the Function FindNearbyNodes(vi, r) finds the set of nearby nodes of vi within
r radius. The Function NumberOfOutgoingEdgesOfCandidateSN(vi, Ni) calculates into g the
original number of outgoing edges of the node cluster {vi} ∪Ni. If g is greater than the thresh-
old, a supernode is added in the set X . The loop in Line 12-18 refines the set X by removing
those supernodes, the nodes of which are a subset of the nodes of another supernode. Finally,
the function returns the set of supernodes X for the summary graph of the original graph G.

Algorithm 4 AddEdge

Input: Tail vertex vi, Head vertex vj , Edge-weight cost, Graph G(V,E)
Output: Graph G(V,E)

1. if there is no edge between vi, vj then
2. add edge between vi, vj with edge-weight cost
3. else if cost < c(vi, vj) then
4. change edge-weight of eij into cost in E
5. end if
6. return G

In Function AddEdge(vi, vj, cost, freq,G) shown in Algorithm 4, an edge is added with given
cost if an edge does not exist between the tail vertex and the head vertex. if an edge already

4.2. STEPS OF REFINING THE SEARCH SPACE 19

exists for a particular pair, then edge cost is only updated when new edge cost is less than current
edge cost.

Algorithm 5 ConstructSummaryGraph

Input: Original graph G(V,E), A set of supernodes X
Output: Summary graph GS(VS, ES)

1. VS ← ∅
2. ES ← ∅
3. for all si ∈ X do
4. add si to VS

5. end for
6. W ← ∅
7. for all si ∈ VS do
8. W ←DijkstraModified(G(V,E), GS(VS, ES), si,W)
9. end for

10. for all si ∈ VS do
11. for all sj ∈ VS do
12. for all vm ∈ si.Ni ∪ {si.vi} do
13. for all vn ∈ sj.Nj ∪ {sj.vj} do
14. if vm = vn then
15. cost← c(vi, vm) + c(vm, vj)// common node, rule 1
16. AddEdge(vm, vn, cost, GS)
17. end if
18. end for
19. end for
20. end for
21. end for
22. return GS

The Function ConstructSummaryGraph(G(V,E), X) shown in Algorithm 5 constructs the sum-
mary graph given the original graph and the set of supernodes. The set VS is populated in Line
3-5. In Line 8, the Function DijkstraModified(si) is called for each supernode of the summary
graph. This function finds and saves path from supernode si to all other supernodes if a path
exists. This function indirectly applies the rule 2-4 in the summary graph. The rule 1 of adding
edges in summary graph is implemented in Line 10-21.

The Function DijkstraModified(G(V,E), GS(VS, ES), si,W) shown in Algorithm 6 finds and
saves path from supernode si to all other supernodes if a path exists given the original graph,
the summary graph, the source supernode and the current list of supernodes. This is the dijkstra
algorithm but the only difference is that it tracks the paths between two supernodes. The variable
queue is a priority queue of 2-tuple:< v, d > where v ∈ V and d is the path-cost from the center
of source supernode to node v. The variable traversed is a list of nodes that contains the nodes
that have been traversed inside this function. The Function parent(v) returns the parent node of
the node v. The queue is initialized in Line 4-6. The tuple with the minimum cost is removed
from the queue in Line 9. If the node u in this tuple is included in atleast one supernode, then in

4.2. STEPS OF REFINING THE SEARCH SPACE 20

Algorithm 6 DijkstraModified

Input: Original graph G(V,E), Summary graph GS(VS,S), supernode si, A list of saved paths,
W

Output: An updated list of saved paths, W
1. traversed← ∅
2. queue← ∅
3. source← si.vi
4. for all vi ∈ V do
5. put < vi,∞ > to queue
6. end for
7. put < source, 0 > to queue
8. while queue is not empty do
9. < u, du >←remove the tuple with smallest cost from queue

10. add u to traversed
11. if srcsn(u) 6= ∅ then
12. for sk ∈ srcsn(u) do
13. if sk = source then
14. continue
15. end if
16. nodes←ExistsSNBetweenTwoSNs(G(V,E), si.vi, u)
17. if nodes 6= ∅ then
18. edgeCost← 0
19. if u = sk.vK then
20. edgeCost← d
21. else
22. edgeCost← GetEdgeCost(G, u, sk.vk)
23. add sk.v−k to nodes
24. end if
25. AddEdge(GS, si, sk, edgeCost)
26. add < si, sk, nodes, edgeCost > to W
27. end if
28. end for
29. end if
30. for v ∈ GetOutGoingEdgeNodes(u) do
31. if v 6∈ traversed then
32. < v, dv >← GetDist(queue, v)
33. if dv > du + c(u, v) then
34. UpdateQueue(queue, v, du + c(u, v))
35. parent(v)← u
36. end if
37. end if
38. end for
39. end while
40. return W

4.2. STEPS OF REFINING THE SEARCH SPACE 21

Line 12-28 the path from node source to u is saved in the summary graph corresponding to the
edge between si and sk, ∀sk ∈ srcsn(u) . The function ExistsSNBetweenTwoSNs(G, si.vi, u)
in Line 16 finds that path if it exists. The function GetEdgeCost(G, u, sk.vk) in Line 22 returns
the edge cost between two nodes in a graph. In Line 30-38, the non-traversed node of outgoing
edges are added to the queue if going to that node via u results in less cost. Finally, this function
returns the updated list of saved paths.

Algorithm 7 ExistsSNBetweenTwoSNs

Input: Original graph G(V,E), Source node vsrc, Destination node vdest
Output: A sequence of nodes, nodes

1. nodes← ∅
2. child← vdest
3. while parent(child) 6= ∅ do
4. add child to nodes
5. child← parent(child)
6. end while
7. add vsrc to nodes
8. Reverse(nodes)
9. return nodes

In Algorithm 7, the Function ExistsSNBetweenTwoSNs(G(V,E), GS(VS, ES), si,W) is elabo-
rated. This function takes a graph, a source node and a destination node as input and returns the
sequence of nodes in the path from source node to destination node calculated using dijkstra.

It should be noted that srcsn(vi) and destsn(vi) is not updated for those nodes vi in the original
graph G that are not converted into supernodes or included in any supernode while constructing
the summary graph. Algorithm 8 updates them for those nodes. For each such two paths have to
be saved, one path starts from this node and ends in its nearest supernode and another path starts
from its nearest supernode and ends in this node. The first path is calculated in Line 2-16 and the
second path is calculated in Line 17-31. The function dijkstra(src, dest,G) returns the shortest
path and the shortestt path cost from source node to destination node in a given graph. The
supernode for which the shortest path cost is minimum is selected. Lmin contains the shortest
path among all the calculated path. Finally, srcsn(vi) is updated with that supernode. The value
of destsn(vi) is updated in the same way.

The mapping of nodes that do not belong to any supernode is explained with an example. In
Figure 4.2, the node v1 does not belong to any supernode. Among the supernodes, s17 can be
reached in the shortest time in the worst case. Thus, srcsn(v1) = s17.

4.2. STEPS OF REFINING THE SEARCH SPACE 22

Algorithm 8 MapNodesToSupernodes

Input: PTN graph G(V,E), Summary graph GS(VS, ES)
Output: Two Lists of saved paths Qsrc, Qdest

1. for all vi ∈ V do
2. if srcsn(vi) = ∅ then
3. dmin ← +∞
4. Lmin ← ∅
5. smin ← ∅
6. for all sk ∈ VS do
7. < nodes, d >← dijkstra(vi, sk.vk, G)
8. if d < dmin then
9. dmin ← d

10. Lmin ← nodes
11. smin ← sk
12. end if
13. end for
14. add smin to srcsn(vi)
15. add < vi, smin.v, Lmin, dmin > to Qsrc

16. end if
17. if destsn(vi) = ∅ then
18. dmin ← +∞
19. Lmin ← ∅
20. smin ← ∅
21. for all sk ∈ VS do
22. < nodes, d >← dijkstra(sk.vk, vi, G)
23. if d < dmin then
24. dmin ← d
25. Lmin ← nodes
26. smin ← sk
27. end if
28. end for
29. add smin to destsn(vi)
30. add < smin.v, vi, Lmin, dmin > to Qdest

31. end if
32. end for
33. return Qsrc, Qdest

The construction of the summary graph and the mapping of nodes of the original graph to
supernodes of the summary graph explained in this section are pre-computed to save computa-
tional time.

4.2.2 Finding k Shortest Paths in the Summary Graph

For a particular package delivery request, k shortest paths are found in the summary graph. The
objective of this step is to reduce search space for finding up to k shortest delivery paths with

4.2. STEPS OF REFINING THE SEARCH SPACE 23

respect to delivery time in the original graph explained later in Section 4.2.3.

First, the nearest node from the source location, vs ∈ V and the nearest node from the the
destination location, vd ∈ V of the package delivery request is identified. Then, the source
node vs and the destination node vd of a package delivery are mapped to two supernodes of
the summary graph, respectively. If one node can be mapped to multiple supernodes, any one
of them can be chosen. This does not affect the final result for finding heuristic k shortest
paths in the original graph, because rather than using this k shortest paths in the summary graph
directly, we use them to decide the search space. If one of the source and the destination nodes is
mapped but the other is not mapped, then no path from source to destination is possible. If both
of them are not mapped, then the search space cannot be refined for that package and existing k

shortest paths algorithm is used in that case. If both of them are mapped, then a k-shortest paths

algorithm is executed in the summary graph from source supernode to destination supernode.
Since, the edge-cost in the summary graph represents the minimum travel-time between the
centers of two supernodes, ks shortest paths calculated here are independent of the delivery
start time. The paths calculated in this step is used to refine the search space in the original
graph.The value of k is user defined.

This step is executed in real time. Because the summary graph is significantly smaller than the
original graph, this step takes considerably small computational time.

4.2.3 Refining the Search Space in the Original Graph

In this step, we refine the search space in the original graph. This refined search space reduces
the computational cost of finding at most k shortest paths but the optimality of the k paths is
sacrificed. The refined search space is different for every package delivery request.

For refining the search space, we use the k shortest paths found in section 4.2.2 which consist
of edges from the summary graph. Each edge in the summary graph has a corresponding saved
path. So, the nodes in the saved paths are included in the refined search space. If the source node

is a non-supernode then the nodes in the path from the source node to its nearest supernode is

also added. If the destination node is a non-supernode then the nodes in the path from the

nearest supernode to the destination node is added too.

The Algorithm 9 shows the pseudocode for refining the search space. It returns the updated
list of nodes to be searched in the PTN graph given the list of paths found in section 4.2.2, the
source node and the destination node. Each node included in each of the k-paths are added
in the refined search space. The nodes included in the mapped supernodes are also added in
that space because the those nodes are within the walking distance from the source node or the
destination node.

4.3. MATCHING CROWD WITH PACKAGE DELIVERY REQUESTS 24

Algorithm 9 RefineSearchSpace
Input: A list of path L, source node vsrc, destination node vdest
Output: The list of nodes included in refined search space Vr

1. Vr ← ∅
2. for all si ∈ srcsn(vsrc) do
3. for all vk ∈ si.vi ∪ si.Ni do
4. add vk in Vr

5. end for
6. end for
7. for all si ∈ destsn(vdest) do
8. for all vk ∈ si.vi ∪ si.Ni do
9. add vk in Vr

10. end for
11. end for
12. add destsn(vdest) to Vr

13. for all path l ∈ L do
14. for all edge e ∈ l.edges do
15. for all vk ∈ saved-path(e).SP do
16. add vk in Vr

17. end for
18. end for
19. end for
20. return Vr

4.3 Matching Crowd with Package Delivery Requests

In this section, our approach to match user participation requests with package delivery requests
is explained. For each package delivery request, we incrementally find at most k shortest path
within the refined search space and for each path we match it with user journey plans to find a
delivery route. If a delivery route is found, no more paths are calculated.

4.3.1 Finding the ith Shortest Path within the Refined Search Space

The first step of the iteration is finding the ith shortest path in the refined space. This step is
computationally feasible because the refined space is much smaller than the original PTN graph.

We find the i shortest path within the refined search space incrementally, starting from i = 1.
This ith path may be the jth shortest path in the original search space, where j ≥ i. We use
the state-of-the-art k shortest paths algorithm in [34]. Since the algorithm in [34] finds looped
paths too, we provide the parameter t to the algorithm. Then this algorithm will find at most k
shortest loopless paths where k ≤ t.

4.3. MATCHING CROWD WITH PACKAGE DELIVERY REQUESTS 25

4.3.2 Matching the ith Shortest Path with Crowd

The last step of the iteration is matching the ith shortest path in the refined space with the
user participation requests. In a PTN, we have to consider many user participation requests for
a delivery path. For this reason, it is not feasible to find the best set of users possible for a
package delivery request computationally. As a result, we use a greedy approach to match the
package delivery request with given user participation requests within practical computational
time.

To match the ith path Li = (j1, . . . , jn) wihtin the refined search space with user journey plans,
first the overlap between the path and the journey plans needs to be found. The journey edge
jk overlaps with the journey plan of a user participation request Si if any of the following
conditions is satisfied:

1. If the journey edge jk is not an walking-edge, then an journey edge jl of a user participa-

tion request Si overlaps jk if jk.vdept = jl.vdept, jk.varr = jl.varr, jk.tdept = jl.tdept and

jk.tarr = jl.tarr.

2. If the journey edge jk is an walking-edge, then an journey edge jl of a user participation

request Si overlaps jk if jl.tdept ≥ jk−1.tarr and jl.tarr ≤ jk+1.tdept.

We represent the overlap between a journey edge jk and user participation requests as a 2-tuple:
< jk, Zk >, where Zk is a set of user participation requests that overlap with jk. We can show
by a simple calculation how much computational expensive finding the optimal matching for a
package delivery request can be. Assume, the ith shortest path consists of 20 journey edges and
each edge overlaps with 10 user participation requests. So, considering detour, the number of
possible combination of user participation requests is 1120.

After finding the overlaps, we choose an user for each journey edge of the delivery path from
the overlapped users in a greedy way. The following rules are applied when choosing a user:

1. The user who carries the package in the first journey edge of the delivery path have to

pick it up from the source location. This user’s detour limit must allow this detour.

2. The user who carries the package in the last journey edge of the delivery path have to

drop it at the destination location. The detour limit of this user must allow this detour.

3. if a user uk−1 carries the package along journey edge jk−1 and another user uk carries

the package along journey edge jk, then uk−1 must change transport at the end of edge

jk−1.

4. If a journey edge jk in the delivery path does not have any user to carry the package,

then the user who carries it in the previous journey edge jk−1 may detour and carry the

package if any of the following rules hold:

4.3. MATCHING CROWD WITH PACKAGE DELIVERY REQUESTS 26

(a) if the edge of the user journey plan that overlaps with the journey edge jk−1 is not

the last journey edge of the user journey plan and jk is a walking edge, then the user

can detour if s/he has enough time to carry the package in edge jk and then come

back at the joining node of jk−1 and jk to continue his journey.

(b) if the edge of the user journey plan that overlaps with the journey edge jk−1 was

the last journey edge of the user journey plan, then the user can detour if the time

needed to carry the package along journey edge jk is within the availble detour

limit of the user. If the journey edge jk is the last edge of the delivery path, then

the available detour limit must include the time needed to drop off the package from

destination node to destination location.

If a delivery route can be constructed that abides by these rules from the ith delivery path then
we terminate the iteration. Otherwise we calculate the next shortest path within the refined
space and try to construct a feasible delivery route.

Chapter 5

Experiment

In this chapter, we evaluate the performance of our approach to find package delivery routes
for a set of delivery requests which minimizes each package delivery time. Since, the problem
solved by existing literature do not exactly match with our problem formulation, we compare
our approach with a straightforward approach where delivery paths are found incrementally
using the state-of-the-art k shortest paths algorithm [34] and the greedy matching approach
explained in Section 4.3.2. We call this approach baseline approach. We compare these two
approaches extensively by varying many parameters.

We run experiments using both real world dataset and synthetic dataset. For the public trans-
port network graph, we use PTV GTFS [39] dataset which contains different public transport
networks, e.g. train, bus, tram, night-bus etc. In the experiments shown in this chapter, we
use the train network which contains 219 nodes, 512 edges and 472636 timetables. The user
participation requests and the package delivery requests are generated synthetically. The user
participation requests are generated from a probability distribution which is extracted from the
Global-scale Check-in [40] dataset. This dataset contains global check-in information for many
users. From this dataset, we extract the check-ins made inside Victoria, Australia and use this
data to generate practical user participation requests. From the dataset we find the top 100

places with the most check-ins and use their probability distribution to generate package deliv-
ery requests. Using the check-in dataset ensures the practicality of the synthetic dataset.

For running the experiments, we use an Intel Core i5 machine with 1.60 GHz CPU and 8GB
RAM. We identify three performance matrices to compare the impact of different parameters:
the runtime, the delivery ratio and the average delivery time per package. The runtime is the
processing time needed to calculate the solution and the delivery ratio means the percentage
of packages for which a delivery route was found. We run the experiments for n package
delivery requests and m user participation requests where each user allows ddt min detour. We
vary these three parameters, the number of user participation requests, detour limit of users in
minutes and the number of package delivery requests. We also vary the parameter t explained

27

5.1. EFFECT OF THE PARAMETER T 28

in Section 4.3.1.

This chapter is organized as follows: Section 5.1 shows the results of varying the parameter
t and explains the results. Section 5.2 shows the results of varying the parameter ddt which
is the detour limit of each user and discusses the results. Section 5.3 shows the experiment
results where m, the number of user participation requests were varied and explains them and
Section 5.4 shows the experiment results where n, the number of package delivery request were
varied and explains them.

5.1 Effect of the Parameter t

15 25 50 100

10

20

30

40

50

t

R
un

tim
e

(i
n

se
co

nd
s)

Heuristic
Baseline

Figure 5.1: Comparison of runtime in seconds for our heuristic approach and the baseline ap-
proach for different parameter settings of t. Here, m = 50000, n = 100 and ddt = 30.

15 25 50 100

60

65

70

75

80

t

D
el

iv
er

y
R

at
io

(i
n

%
)

Heuristic
Baseline

Figure 5.2: Comparison of delivery ratio in percentage for our heuristic approach and the base-
line approach for different parameter settings of t. Here, m = 50000, n = 100 and ddt = 30.

5.2. EFFECT OF DETOUR LIMIT 29

In this section, we observe the impact of the parameter t in the runtime and the delivery ratio.
When t increases, the number of delivery paths calculated may increase.

In Figure 5.1, we see that the runtime of our approach is lower than the approach where optimal
k shortest paths algorithm is used. Hence, our solution approach improves on performance.
We notice that the runtime increases as the value of t increases. It is because more delivery
paths are considered for each package and so computational time increases. In Figure 5.2, we
observe that the delivery ratio is slightly lower than the original approach. This is the trade-off
for reducing computational time. Here, the delivery ratio increases with the increase in the value
of t. Since more delivery paths are considered, the chance of finding a delivery route for each
package increases. Thus, more packages can be delivered.

20 25 50 100

9.25

9.3

9.35
9.35

9.27

9.37

9.29

9.22

9.26

9.35

9.29

t

D
el

iv
er

y
Ti

m
e

(i
n

ho
ur

s)

Heuristic
Baseline

Figure 5.3: Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of t. Here, m = 50000, n = 100 and ddt = 30.

In Figure 5.3, y-axis represents the average delivery time needed to deliver a package. We
observe that the average time it takes to deliver a package is almost same in our approach and
the baseline approach. We see that it takes approximately 9.5 hours to deliver a package, which
is a feasible delivery time. Thus, our heuristic does not perform bad in terms of service quality.

5.2 Effect of Detour Limit

We study the impact of detour limit in this section. If the detour limit increases then we have
more flexibility in choosing users for a delivery route and detouring a user. We choose 15, 30,
45, 60 as the values of ddt. All usera allowing detour limit more than 60 minutes or 1 hour is
not realistic.

We observe that in Figure 5.4, the runtime decreases with increase in detour limit and in Fig-

5.2. EFFECT OF DETOUR LIMIT 30

ure 5.5, the delivery ratio increases with increase in detour limit. These results follow basic
intuition. If detour limits increases then the algorithm will have more flexibility in choosing a
user to detour. As a result, more packages are delivered. Again, because there is more flexibil-
ity in choosing users, we find a delivery route sooner and the iteration terminates earlier. As a
result, the runtime decreases.

15 30 45 60

13

14

15

Detour Limit (in minutes)

R
un

tim
e

(i
n

se
co

nd
s)

Heuristic
Baseline

Figure 5.4: Comparison of runtime in seconds for our heuristic approach and the baseline ap-
proach for different parameter settings of detour limit, ddt in minutes. Here, m = 50000,
n = 100 and t = 50.

15 30 45 60

60

65

70

75

80

Detour Time (in minutes)

D
el

iv
er

y
R

at
io

(i
n

%
)

Heuristic
Baseline

Figure 5.5: Comparison of delivery ratio in percentage for our heuristic approach and the base-
line approach for different parameter settings of detour limit, ddt in minutes. Here, m = 50000,
n = 100 and t = 50.

5.3. EFFECT OF THE NUMBER OF USER PARTICIPATION REQUESTS 31

15 30 45 60

9.1

9.2

9.3

9.4

9.46

9.29

9.13
9.1

9.45

9.29
9.33

9.14

Detour Limit (in minutes)

D
el

iv
er

y
Ti

m
e

(i
n

ho
ur

s)
Heuristic
Baseline

Figure 5.6: Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of detour limit, ddt in minutes. Here, m = 50000,
n = 100 and t = 50.

In Figure 5.6, we notice that average delivery time decreases with increase in detour limit. This
is because relaxed detour limit allow us to find delivery routes for shorter paths.

5.3 Effect of the Number of User Participation Requests

0.25 0.5 0.75 1

·105

10

15

20

25

#User Requests

R
un

tim
e

(i
n

m
in

ut
es

)

Heuristic
Baseline

Figure 5.7: Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of the number of user participation requests. Here,
n = 100, t = 50 and ddt = 30.

We evaluate the impact of varying the number user participation requests (m) in this section. If
m increases then there is more options in choosing users for a delivery route. We choose 25000,

5.3. EFFECT OF THE NUMBER OF USER PARTICIPATION REQUESTS 32

50000, 75000, 100000 as the values of m. The choice of the values is realistic because daily a
large number of people use the train network.

0.25 0.5 0.75 1

·105

60

70

80

#User Requests

D
el

iv
er

y
R

at
io

(i
n

%
)

Heuristic
Baseline

Figure 5.8: Comparison of delivery ratio in percentage for our heuristic approach and the base-
line approach for different parameter settings of the number of user participation requests. Here,
n = 100, t = 50 and ddt = 30.

In fig. 5.8, we notice that the runtime increases with increase in the number of user participation
requests. In Figure 5.5, we observe that the delivery ratio increases with the increase in the
number of user participation requests. These results can be explained intuitively. If the number
of user participation requests increases then there will be more user available to carry a package.
As a result, more packages are delivered. In addition, because the algorithm have to match more
users with a single delivery path, the runtime decreases.

0.25 0.5 0.75 1
·105

9.2

9.4

9.6

9.32

9.73

9.37
9.4

9.21

9.67

9.45
9.42

#User Requests

D
el

iv
er

y
Ti

m
e

(i
n

ho
ur

s)

Heuristic
Baseline

Figure 5.9: Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of user participation requests. Here, n = 100, ddt = 30
and t = 50.

5.4. EFFECT OF THE NUMBER OF PACKAGE DELIVERY REQUESTS 33

In Figure 5.9, we observe that the change in the number of user participation requests does not
affect the average package delivery time much. We can also see that sometimes our approach
results in slightly better average delivery time. This can happen because the baseline algorithm
is not optimal.

5.4 Effect of the Number of Package Delivery Requests

100 200 300 400 500
0

50

100

150

Package delivery Requests

R
un

tim
e

(i
n

se
co

nd
s)

Heuristic
Baseline

Figure 5.10: Comparison of runtime in seconds for our heuristic approach and the baseline
approach for different parameter settings of the number of package delivery requests. Here,
m = 50000, t = 50 and ddt = 30.

100 200 300 400 500

60

65

70

75

#Package Delivery Requests

D
el

iv
er

y
R

at
io

(i
n

%
)

Heuristic
Baseline

Figure 5.11: Comparison of delivery ratio in percentage for our heuristic approach and the
baseline approach for different parameter settings of the number of package delivery requests.
Here, m = 50000, t = 50 and ddt = 30.

5.4. EFFECT OF THE NUMBER OF PACKAGE DELIVERY REQUESTS 34

In this section, we study how varying the number user participation requests (n) impacts the
performance metrics. If m increases then there is more options in choosing users for a delivery
route. We choose 50, 100, 200 and 400 as the values of n.

In Figure 5.10, we notice that the runtime increases with the increase in the number of package
delivery requests. This is expected because more packages need to be matched means more
computation. In Figure 5.11, we observe that first delivery ratio does not change with increase
in package delivery requests but then the delivery ratio starts dropping. From this graph, we can
conclude that for a particular number of journey plans available, there is a limit in the number
of packages that can be delivered without degrading performance. If the number of packages to
deliver exceeds that limit then delivery ratio starts dropping.

50 100 200 400

9.3

9.4

9.5

9.6

9.42

9.51

9.43

9.32

9.26

9.57

9.45

9.34

#Package Delivery Requests

D
el

iv
er

y
Ti

m
e

(i
n

ho
ur

s)

Heuristic
Baseline

Figure 5.12: Comparison of delivery time in hours for our heuristic approach and the baseline
approach for different parameter settings of the number of the package delivery requests. Here,
n = 100, ddt = 30 and t = 50.

In Figure 5.12, we observe that the change in the number of package delivery requests does not
affect the average package delivery time much.

Chapter 6

Conclusion

We have introduced a novel problem, crowdsourced package delivery utilizing the public trans-
port network in our thesis. We propose a heuristic approach to solve this problem computa-
tionally efficiently with detour constraint that reflect real life scenario. In our approach we
minimize each package delivery time since fast delivery is important delivery services. We pro-
pose a novel graph summarizing method for the large PTN graph to efficiently find paths in that
graph. In addition, we use a greedy matching approach to match the heuristically found paths
with passengers journey plans to make the computational time of matching feasible.

We evaluated our approach extensively with real world dataset and synthetic dataset. The syn-
thetic data was generated from real world probability distribution to ensure its practicality. Since
our problem formulation is different from existing works, we compared our heuristic approach
with the optimal approach. From the experiments, we observe that there is a trade-off between
computational efficiency and the number of successful delivery. However, we interestingly no-
tice that there is no trade-off in terms of package delivery time. The service quality of the
delivery system does not reduce in the heuristic approach. From the experiments we can also
conclude that if there is enough travellers willing to deliver a package and the number of pack-
ages needed to deliver is within reasonable limit, then crowdsourced package delivery via the
public transport network is practical.

In the future, we aim to find delivery routes with more constraints, e.g. transport capacity that
reflect practical scenario. In this thesis we have minimized the delivery time of each package.
An even more practical approach will be to minimize aggregate package delivery time which
reflect the service quality of the system or to minimize aggregate detour made by workers which
reflects service cost of the system. Another working direction is to work on matching multiple
users to single package in case of heavy packages.

35

References

[1] “Couriers and local delivery service providers’ global market share
in 2017.” https://www.statista.com/statistics/236309/

market-share-of-global-express-industry/. Accessed: 2018-03-26.

[2] “UPS fact sheet.” https://www.pressroom.ups.com/pressroom/

ContentDetailsViewer.page?ConceptType=FactSheets&id=

1426321563187-193. Accessed: 2018-03-26.

[3] “amazonFLEX.” https://flex.amazon.com/. Accessed: 2018-04-5.

[4] “deliv.” https://www.deliv.co/about/. Accessed: 2018-04-5.

[5] “POSTMATES.” https://about.postmates.com/. Accessed: 2018-04-5.

[6] “instacart.” https://www.instacart.com/. Accessed: 2018-04-5.

[7] “deliveroo.” https://deliveroo.co.uk/. Accessed: 2018-04-5.

[8] “UBEReats.” https://www.ubereats.com/. Accessed: 2018-04-5.

[9] “DoorDash.” https://www.doordash.com/about/. Accessed: 2018-04-5.

[10] “Dada.” https://www.imdada.cn/. Accessed: 2018-04-5.

[11] J.-F. Rougès and B. Montreuil, “Crowdsourcing delivery: New interconnected business
models to reinvent delivery,” in IPIC, pp. 28–30, 2014.

[12] B. Coltin and M. M. Veloso, “Scheduling for transfers in pickup and delivery problems
with very large neighborhood search,” in AAAI, pp. 2250–2256, 2014.

[13] D. Zhang, H. Xiong, L. Wang, and G. Chen, “Crowdrecruiter: selecting participants for
piggyback crowdsensing under probabilistic coverage constraint,” in UbiComp, pp. 703–
714, 2014.

[14] D. Zhang, L. Wang, H. Xiong, and B. Guo, “4w1h in mobile crowd sensing,” IEEE Com-

munications Magazine, vol. 52, no. 8, pp. 42–48, 2014.

36

https://www.statista.com/statistics/236309/market-share-of-global-express-industry/
https://www.statista.com/statistics/236309/market-share-of-global-express-industry/
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=FactSheets&id=1426321563187-193
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=FactSheets&id=1426321563187-193
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=FactSheets&id=1426321563187-193
https://flex.amazon.com/
https://www.deliv.co/about/
https://about.postmates.com/
https://www.instacart.com/
https://deliveroo.co.uk/
https://www.ubereats.com/
https://www.doordash.com/about/
https://www.imdada.cn/

REFERENCES 37

[15] S. He, D. Shin, J. Zhang, and J. Chen, “Toward optimal allocation of location dependent
tasks in crowdsensing,” in INFOCOM, pp. 745–753, 2014.

[16] L. R. Varshney, “Privacy and reliability in crowdsourcing service delivery,” in SRII Global

Conference, pp. 55–60, 2012.

[17] M. Xiao, J. Wu, L. Huang, Y. Wang, and C. Liu, “Multi-task assignment for crowdsensing
in mobile social networks,” in INFOCOM, pp. 2227–2235, 2015.

[18] C. Chen, S. Cheng, A. Gunawan, A. Misra, K. Dasgupta, and D. Chander, “TRACCS: A
framework for trajectory-aware coordinated urban crowd-sourcing,” in HCOMP, 2014.

[19] Y. Li, M. L. Yiu, and W. Xu, “Oriented online route recommendation for spatial crowd-
sourcing task workers,” in SSTD, pp. 137–156, 2015.

[20] A. Sadilek, J. Krumm, and E. Horvitz, “Crowdphysics: Planned and opportunistic crowd-
sourcing for physical tasks,” in ICWSM, pp. 536–545, 2013.

[21] C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, and E. H. Sha, “Crowddeliver:
Planning city-wide package delivery paths leveraging the crowd of taxis,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1478–1496, 2017.

[22] C. Zhang, Z. Du, M. D. Parmar, and Y. Bai, “Pocket-switch-network based services
optimization in crowdsourced delivery systems,” Computers & Electrical Engineering,
vol. 62, pp. 53–63, 2017.

[23] J. McInerney, A. Rogers, and N. R. Jennings, “Learning periodic human behaviour mod-
els from sparse data for crowdsourcing aid delivery in developing countries,” CoRR,
vol. abs/1309.6846, 2013.

[24] D. S. Setzke, C. Pflügler, M. Schreieck, S. Fröhlich, M. Wiesche, and H. Krcmar, “Match-
ing drivers and transportation requests in crowdsourced delivery systems,” in AMCIS,
2017.

[25] A. Arslan, N. Agatz, L. Kroon, and R. Zuidwijk, “Crowdsourced delivery: A dynamic
pickup and delivery problem with ad-hoc drivers,” 2016.

[26] J. McInerney, A. Rogers, and N. R. Jennings, “Learning periodic human behaviour models
from sparse data for crowdsourcing aid delivery in developing countries,” in UAI, pp. 401–
410, 2013.

[27] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wag-
ner, and R. F. Werneck, “Route planning in transportation networks,” in Algorithm Engi-

neering, vol. 9220, pp. 19–80, 2016.

REFERENCES 38

[28] F. Schulz, D. Wagner, and C. D. Zaroliagis, “Using multi-level graphs for timetable infor-
mation in railway systems,” in ALENEX, pp. 43–59, 2002.

[29] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management Science,
vol. 17, no. 11, pp. 712–716, 1971.

[30] E. L. Lawler, “A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem,” Management Science, vol. 18,
no. 7, pp. 401–405, 1972.

[31] A. Perko, “Implementation of algorithms for K shortest loopless paths,” Networks, vol. 16,
no. 2, pp. 149–160, 1986.

[32] E. de Queirós Vieira Martins and M. M. B. Pascoal, “A new implementation of yen’s
ranking loopless paths algorithm,” 4OR, vol. 1, no. 2, pp. 121–133, 2003.

[33] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on computing, vol. 28, no. 2,
pp. 652–673, 1998.

[34] E. d. Q. V. Martins and J. L. E. Dos Santos, “A new shortest paths ranking algorithm,”
Investigção Operacional, vol. 20, no. 1, pp. 47–62, 1999.

[35] V. M. Jiménez and A. Marzal, “Computing the K shortest paths: A new algorithm and an
experimental comparison,” in WAE, pp. 15–29, 1999.

[36] V. M. Jiménez and A. Marzal, “A lazy version of eppstein’s K shortest paths algorithm,”
in WEA, pp. 179–190, 2003.

[37] G. Scano, M.-J. Huguet, and S. U. Ngueveu, “Adaptations of k-shortest path algorithms
for transportation networks,” in IESM, pp. 663–669, 2015.

[38] S. Wang, Y. Yang, X. Hu, J. Li, and B. Xu, “Solving the k-shortest paths problem in
timetable-based public transportation systems,” Journal of Intelligent Transportation Sys-

tems, vol. 20, no. 5, pp. 413–427, 2016.

[39] “PTV GTFS dataset.” https://www.data.vic.gov.au/data/dataset/

ptv-timetable-and-geographic-information-2015-gtfs. Accessed:
2018-10-19.

[40] “Global-scale Check-in Dataset.” https://sites.google.com/site/

yangdingqi/home/foursquare-dataset. Accessed: 2018-10-19.

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Generated using Undegraduate Thesis LATEX Template, Version 1.4. Department of
Computer Science and Engineering, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh.

This thesis was generated on October 25, 2018 at 7:39am.

39

	CANDIDATES' DECLARATION
	CERTIFICATION
	ACKNOWLEDGEMENT
	List of Figures
	List of Tables
	List of Algorithms
	ABSTRACT
	Introduction
	Literature Review
	Package Delivery with Crowd
	Graph Summarization
	The k-Shortest Paths Problem
	The k-Shortest Paths Problem in the Public Transport Network

	Problem Formulation
	Preliminaries
	Problem Statement

	Our Solution
	Overview
	Steps of Refining the Search Space
	Summarizing the PTN Graph
	Finding k Shortest Paths in the Summary Graph
	Refining the Search Space in the Original Graph

	Matching Crowd with Package Delivery Requests
	Finding the ith Shortest Path within the Refined Search Space
	Matching the ith Shortest Path with Crowd

	Experiment
	Effect of the Parameter t
	Effect of Detour Limit
	Effect of the Number of User Participation Requests
	Effect of the Number of Package Delivery Requests

	Conclusion
	References

